On the Solution of the Inverse Eigenvalue Complementarity Problem
نویسندگان
چکیده
In this paper, we discuss the solution of an Inverse Eigenvalue Complementarity Problem. Two nonlinear formulations are presented for this problem. A necessary and sufficient condition for a stationary point of the first of these formulations to be a solution of the problem is established. On the other hand, for assuring global convergence to a solution of this problem when it exists, an enumerative algorithm is designed by exploiting the structure of the second formulation. The use of additional implied constraints for enhancing the efficiency of the algorithm is also discussed. Computational results are provided to highlight the performance of the algorithm.
منابع مشابه
On the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملSome results on the symmetric doubly stochastic inverse eigenvalue problem
The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$, to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$. If there exists an $ntimes n$ symmetric doubly stochastic ...
متن کاملAnalysis of Natural Frequencies for a Laminated Composite Plate with Piezoelectric Patches using the First and Second Eigenvalue Derivatives
In this paper, the first and second order approximations of Taylor expansion are used for calculating the change of each natural frequency by modifying an arbitrary parameter of a system with a known amount and based on this approximation, the inverse eigenvalue problem is transformed to a solvable algebraic equation. The finite element formulation, based on the classical laminated plate theory...
متن کاملSome Results about Set-Valued Complementarity Problem
This paper is devoted to consider the notions of complementary problem (CP) and set-valued complementary problem (SVCP). The set-valued complementary problem is compared with the classical single-valued complementary problem. Also, the solution set of the set-valued complementary problem is characterized. Our results illustrated by some examples. This paper is devoted to co...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Optimization Theory and Applications
دوره 162 شماره
صفحات -
تاریخ انتشار 2014